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Take a permutation and count the number of ways to express it as a product

of a fixed number of transpositions — you have calculated a Hurwitz number.

By adding a mild constraint on such factorisations, one obtains the notion of a

monotone Hurwitz number. We have recently shown that the monotone

Hurwitz problem fits into the so-called topological recursion/quantum curve

paradigm. This talk will attempt to explain what the previous sentence means.



Simple Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation
as a product of transpositions.

Definition
Let Hg,n(μ1, μ2, . . . , μn) be 1

|μ|! multiplied by the number of tuples
(σ1, σ2, . . . , σm) of transpositions in S|μ| such that

m = 2g− 2+ n+ |μ|;

σ1σ2 · · ·σm has labelled cycles of lengths μ1, μ2, . . . , μn; and

〈σ1, σ2, . . . , σm〉 is transitive.

Fact
Hurwitz numbers equivalently count

branched covers of CP1 with respect to ramification over ∞;

edge-labelled embedded graphs with respect to winding number.



Monotone Hurwitz numbers

For monotone Hurwitz numbers, we add a mild constraint.

Definition
Let ~Hg,n(μ1, μ2, . . . , μn) be 1

|μ|! multiplied by the number of tuples
(σ1, σ2, . . . , σm) of transpositions in S|μ| such that

m = 2g− 2+ n+ |μ|;

σ1σ2 · · ·σm has labelled cycles of lengths μ1, μ2, . . . , μn;

〈σ1, σ2, . . . , σm〉 is transitive; and

if σi = (ai bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤ bm.

Why monotone?

Monotone Hurwitz numbers are natural from the viewpoint of

matrix models (HCIZ integral);

representation theory (Jucys–Murphy elements); and

integrability (Toda tau-functions).



Example calculation

Take (g,n) = (0,2) and μ = (1,2), so m = 2g− 2+ n+ |μ| = 3.

There are 27 products of 3 transpositions in S3 and 24 are transitive.

(1 2) ◦ (1 2) ◦ (1 3)
(1 2) ◦ (1 2) ◦ (2 3)
(1 2) ◦ (1 3) ◦ (1 3)

(1 2) ◦ (1 3) ◦ (2 3)
(1 2) ◦ (2 3) ◦ (1 3)
(1 2) ◦ (2 3) ◦ (2 3)

(1 3) ◦ (1 3) ◦ (2 3)
(1 3) ◦ (2 3) ◦ (1 3)
(1 3) ◦ (2 3) ◦ (2 3)

(2 3) ◦ (1 3) ◦ (1 3)
(2 3) ◦ (1 3) ◦ (2 3)
(2 3) ◦ (2 3) ◦ (1 3)

(1 2) ◦ (1 3) ◦ (1 2)
(1 2) ◦ (2 3) ◦ (1 2)
(1 3) ◦ (1 2) ◦ (1 2)

(1 3) ◦ (1 2) ◦ (1 3)
(1 3) ◦ (1 2) ◦ (2 3)
(1 3) ◦ (1 3) ◦ (1 2)

(1 3) ◦ (2 3) ◦ (1 2)
(2 3) ◦ (1 2) ◦ (1 2)
(2 3) ◦ (1 2) ◦ (1 3)

(2 3) ◦ (1 2) ◦ (2 3)
(2 3) ◦ (1 3) ◦ (1 2)
(2 3) ◦ (2 3) ◦ (1 2)

All 24 products produce cycle type (1,2), so H0,2(1,2) =
24
3! = 4.

Only the first 12 products are monotone, so ~H0,2(1,2) =
12
3! = 2.



Polynomiality

Theorem (Ekedahl–Lando–Shapiro–Vainshtein, 2001, and
Goulden–Guay-Paquet–Novak, 2013)

There are polynomials Pg,n and ~Pg,n such that

Hg,n(μ1, . . . , μn) = m!×
∏ μ

μi
i
μi!
× Pg,n(μ1, . . . , μn)

~Hg,n(μ1, . . . , μn) =
∏�2μi

μi

�
× ~Pg,n(μ1, . . . , μn).

For example,

P1,2(μ1, μ2) =
1

24 (μ
2
1 + μ2

2 + μ1μ2 − μ1 − μ2)

~P1,2(μ1, μ2) =
1

12 (2μ
2
1 + 2μ2

2 + 2μ1μ2 − μ1 − μ2 − 1).

In fact, [μa1
1 · · ·μ

an
n ]Pg,n(μ1, . . . , μn) = ±

∫

Mg,n

ψa1
1 · · ·ψ

an
n λ3g−3+n−|a|.

Question
Do the coefficients of ~Pg,n have geometric meaning?



Cut-and-join recursion

(Monotone) Hurwitz numbers of type (g,n) can be calculated from
those of types

(g,n− 1)

(g− 1,n+ 1)

(g1,n1)× (g2,n2) for
n g1 + g2 = g

n1 + n2 = n+ 1.

For example,

μ1 ~H1,2(μ1, μ2) = (μ1 + μ2) ~H1,1(μ1 + μ2) +
∑

α+β=μ1

αβ ~H0,3(α, β, μ2)

+
∑

α+β=μ1

αβ
�
~H0,1(α) ~H1,2(β, μ2) + ~H1,1(α)~H0,2(β, μ2)

�
.



Topological recursion and quantum curves

quantum curve

bA(b, by)
Schrödinger eq.

bA(b, by)Z(,ℏ) = 0

wave function

Z(,ℏ)

spectral curve

A(, y) = 0

differentials
ωg,n

free energies

Fg,n

topological

recursion

integrate

quantise semi-classical limit

Topological recursion (Chekhov–Eynard–Orantin):

ωg,n(zS) =
∑
α

Res
z=α

K(z1, z)

�
ωg−1,n+1(z, z, zS\{1})

+
◦∑

g1+g2=g
ItJ=S\{1}

ωg1 ,|I|+1(z, zI)ωg2 ,|J|+1(z, zJ)

�

Wave function: Z(x, ℏ) = exp
� ∞∑

g=0

∞∑
n=1

ℏ2g−2+n

n! Fg,n(x, . . . ,x)
�

Polarisation: bx = x and by = −ℏ ∂
∂x , which imply [bx, by] = ℏ



Results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

The spectral curve A(x,y) = xy2 + y + 1 = 0 yields

Fg,n(x1, . . . ,xn) =
∞∑
μ

~Hg,n(μ1, . . . , μn) xμ1
1 · · ·x

μn
n .

The wave function satisfies

Z(x, ℏ) = 1+
∞∑

d=1

∞∑
m=0

¨
d+m− 1

d− 1

«
xd ℏm−d

d!
.

The corresponding quantum curve is bA(bx, by) = bxby2 + by + 1, so

xℏ2 ∂
2Z

∂x2
− ℏ

∂Z

∂x
+Z = 0.



TR QC PROBLEM
N, DMSS MS Ribbon graph enumeration
AC, KZ KZ, DoN Dessin enumeration
EO Z Intersection theory on Mg,n

EMS Z, MSS Simple Hurwitz numbers
DoLN, BHLM MSS Orbifold Hurwitz numbers
DoDM DoDM Monotone Hurwitz numbers
DOSS DMNPS Gromov–Witten theory of CP1

EO Z One-legged topological vertex
DM DM SL(2,C) Hitchin fibrations
??? DoM Hypermap enumeration
??? MSS Spin Hurwitz numbers
EO ??? Weil–Petersson volumes
EO, FLZ ??? Gromov–Witten theory of toric CY3s
??? ??? Coloured Jones polynomials of knots
??? ??? Coloured HOMFLY polynomials of knots
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